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Abstract— A second-gradient constitutive law for granular media is derived, in which stress is a
function of the second order of strain gradient. The constitutive coefficients for granular materials
with an isotropic packing structure are derived in explicit terms of inter-particle stiffness and particle
size. In the present constitutive theory. the total number of elastic constants for the isotropic
granular material is four: two of them are the usual Lame constants ; the other two are associated
with the second gradient of strain. The derived constitutive relationships illustrate the important
role of micro-scale properties in the macro-scale behavior. The influence of inter-particle stiffness
and particle size on the response of material due to the second gradient of strain is discussed. This
paper also discusses the connection between the second-gradient theory and non-local theory. The
second-gradient theory can be regarded as the first-order approximation of non-local theory.

1. INTRODUCTION

Granular material, such as soil, powder, ceramic material, etc., can be perceived as a
collection of particles. The overall mechanical properties for granular materials depend
significantly on the micro-scale geometric arrangement and on the contact stiffness between
two interacting particles. It is desirable to derive the macro-scale constitutive law for
granular materials by using suitable macro-scale continuum variables that are capable of
reflecting the discrete nature at micro-scale level. A number of studies have been attempted
along this line of approach. For example, the mechanical behavior of regular packings of
elastic spheres was modelled by Duffy and Mindlin (1957), Deresiewicz (1958), and Duffy
(1959). More recently, micromechanical models for randomly packed granular materials,
considering the effect of the microstructure and discrete nature of the material, have been
suggested by many investigators. For example, models without consideration of particle
rotation can be found in the work by Walton (1987), Bathurst and Rothenberg (1988),
Chang (1988), Jenkins (1988). etc. Models with consideration of particle rotation can be
found in the work by Chang and Liao (1990), Chang and Ma (1991, 1992), and Chang
(1993). With the effect of particle rotation, the macro-scale continuum for granular material
is of a micro-polar or Cosserat type. It is noted that Chang and Liao (1990) suggested a
method of transforming a discrete particle system into an equivalent continuum system.
The continuum system is characterized by continuum fields constructed from particle
displacement and particle rotation. Utilizing the method, this paper aims to develop a high-
gradient constitutive theory for granular materials on the physical basis that micro-scale
interaction between particles controls the macro-scale response of granular assembly.

Early high-gradient models for metals were proposed by Toupin and Gazis (1964),
Mindlin (1965), and Beran and McCoy (1970b). Recently, high-gradient models considering
plastic deformation have been used in the study of localized deformation (Coleman and
Hodgdon, 1985; Triantafyllidis and Aifantis, 1986 ; Bazant and Pijandier-Cabot, 1987;
Bardenhagen and Triantafyllidis, 1994). Unlike the aforementioned high-gradient models,
the present model is specifically derived for granular material, and the derived moduli are
in explicit terms of inter-particle contact properties. The present model is limited to the
elastic condition. No plastic deformation such as particle sliding or localized shear band is
considered. The micro-structure effects become important for dynamic problems involving
short wavelengths.
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In this paper, we first represent the displacement and rotation fields by continuous
polynomial functions. The gradients of displacement and rotation fields are selected as
macro-scale kinematic continuum variables for the equivalent continuum. Thus the consti-
tutive equations include terms of gradients of displacement and rotation. Since the particle
movement can be retrieved from the continuum variables, we derive the constitutive equa-
tions by considering the inter-particle properties of granular materials. In this paper, we
use up to the second-order gradients of strain.

To understand better the relationship between micro and macro properties, we further
derive closed-form expressions of the constitutive constants (or elastic moduli) for isotropic
granular materials. Discussion is given on the relations between the derived elastic constants
and micro-scale properties, such as the internal length of granular material and inter-
particle stiffness. Finally, we discuss the links between the derived second-gradient theory
and non-local theory. The second-gradient theory can be regarded as the first-order approxi-
mation of non-local theory.

2. MICROMECHANICAL DESCRIPTION OF GRANULAR MATERIALS

2.1. Kinematic description in granular assembly

A simple conceptual model for granular material is to treat it as a collection of particles.
When a representative volume element of particles is subjected to an increment of load,
particles undergo translations ! and rotations w/, resulting in the relative deformation
between particles. Considering the kinematics of two particles of convex shape, the inter-
particle displacement 67" and relative rotation 6/ of particle m relative to particle » at the
contact point ¢ are given by

M

8 = O = ul' —u + ey —wﬁr,?‘)}

0 = 0" = o — o]

where the quantity e, = the permutation symbols used in tensor representation for the
cross product of vectors, and r{ is the vector joining the centroid of the nth particle to the
contact point as shown in Fig. 1.

Whereas the inter-particle displacements generate inter-particle forces, the inter-par-
ticle rotations generate inter-particle moments in granular materials. For two particles in
contact, the relations between the contact force /i and inter-particle displacement éf and
between the contact moment s and inter-particle rotation €¢ can be expressed, respectively,
as

Particle m

Particle n

Fig. 1. Kinematics of two interacting particles.
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fi = K,,(S‘,‘} @
m = Gy
In eqn (2), Kj;, G, are the contact stiffness tensors given by
K, =Knn+Ks;s;+ K1t 3)
G, =Gnhn+Gss,+G Lt

where n, s, and t are the basic unit vectors of the local co-ordinate system constructed at
each contact as shown in Fig. 2. The vector n is normal to the contact plane. The other two
orthogonal vectors, s and t, are on the contact plane, given by

n = COS Y€, +sin y cos fie, +siny sin fe,

dn . _
= d—,; = —sinye, +cosycos fie; +cos ysin fle; 4)
t = nxs = —sin fie, +cos fie;

In eqn (3), the variable X, is the contact stiffness in the direction normal to the contact
plane. The variables K, and K, are the contact stiffnesses in the tangential directions of s
and t, respectively, on the contact plane. For two identical elastic spherical particles in
contact, the contact area is of circular shape, and the variables K, and K, are expected to
be the same. In this situation, values of contact stiffness can be obtained from Hertz—
Mindlin contact theory as a function of particle properties and contact force. Similarly, the
variables G,, G,, and G, are the contact stiffness for rotation in the directions of », s, and ¢,
respectively, on the contact plane. Whereas the contact stiffnesses K,, K and K, are respon-
sible for transmitting forces through inter-particle contacts, the contact stiffnesses G,, G,
and G, are responsible for transmitting moments through inter-particle contacts in a granu-
lar medium.

To develop a continuum mechanics model for the behavior of a particle assembly, it
is desirable to view the discrete system as an equivalent continuum system. To this end, we
define the displacement and rotation of discrete particles as macro-scale continuum fields,
denoted as: displacement u(x) and rotation w,(x). When x is located at the centroid of the
nth particle, the functions represent the displacement and rotation of the nth particle :

Fig. 2. Local co-ordinate system at an inter-particle contact.
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u(x7) = uf
}. &)
w,(x]') =
Following the approach by Chang and Liao (1990), using a polynomial expansion for
the displacement and rotation fields, the displacement and rotation of the mth particle can
be estimated from the deformation gradients at the neighboring nth particle, given by

u{ﬂl — u;’l+u;i/L7"1 +%u‘l’l,ALl’U?lL;\U77+ L. 6
w;?l e wlﬂ +w,’i/-L']"” +%(1);7/ALI/HHLI,\U."+ . ( )
where the branch vector L} = v/ — " ; the displacement and rotation gradients of the nth
t 1 i
particle are treated to be the continuum kinematic variables, defined as follows:
u — Ou;(x;) n Oaw(x;)
o o AL
0x; |, —v ZA T N
7 ™
n _ 8_11,-()(,-) 2
"= 2 i
VEaxoxg e

It is noted that the rotation and displacement are not two independent variables.
During deformation of a granular material, the rotation of a particle consists of two
components : the rigid body rotation I'7 and the particle spin ¥/7, i.e.

o =y +T7. 3

Whereas the particle spin is independent of the displacement field, the rigid body rotation
is solely induced by the displacement field, given by

[— 1 n . d _ n
I'= T RCik YA s uf,\/] = *ezjkrk (9)

where 1 is defined as the skew-symmetric part of displacement gradients as opposed to
the strain ¢;; defined as the symmetric part of the displacement gradient, given by

, (10)

n o1 n n

e =i +ully) }
; N n :

Uiy = U —uj;

2.2. Different classes of continua

In the last section, we represented the discrete system as an equivalent continuum
system that is characterized by the two continuous fields of displacement and rotation. The
discrete variables and the continuum variables are linked through the series expression of
eqn (6). When the number of terms in this series is large enough, the continuum system can
capture as many details as the discrete system. The advantage of the continuum system is
that one can treat the problem at desirable levels by taking different degrees of approxi-
mation of eqn (6). The ultimate goal is to have a simple model while still capturing the
essential features of granular materials.

Different degrees of approximation of eqn (6) lead to different classes of ‘continua’.
We discuss the various degrees of approximation under two categories: (1) high-gradient
continua—including higher orders of deformation gradients, and (2) first-gradient con-
tinua—including only the first order of deformation gradients.
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(1) High-gradient continua

Class 1 : High-gradient micro-polar continua. On substituting eqn (6) into eqn (1), the
inter-particle displacement and the inter-particle rotation between the nth particle and the
mth particle can be expressed by a series, given by:

S = L™ 54 LI LT A 2 L7 L L
e (W), L 4300y L LE™) + f L]+ . (11

nm oo oynam 4 1 nmynm ;1 _n nm y nm y nm
gk - waL/ +5wk,lle Lm +gwk./anl Lm Ln + ..

Equation (11) is a general form. Particle spin and moment transmitting through the
continua are considered.

Class 2 . High-gradient couple stress/Cosserat continua. In the situation in which particle
spin is neglected, the particle rotation is equal to the rigid body rotation given in eqn (9).
The inter-particle displacement and the inter-particle rotation between the sth particle and
the mth particle in eqn (11) reduce to

nm __ 7l nm 1 " nm nm 1 (73 nm nm nm
0" = ep L™ 4+ &kmLi™ L + g €kipg L7 Ly Ly

nm
!

2

+u?k_,]‘mL¢:'( —rf'")+§w['k,,]m CLi—rmyLTL 4 .. (12)

nm |1 nm
0" = Eekpq”;plL/ :

It is noted that, even though the particle spin is neglected, the gradients of rigid body
rotation can still contribute to inter-particle rotation and cause the transmission of contact
moments through granular material. This mechanism resembles that proposed in couple
stress theory and Cosserat theory (Cosserat and Cosserat, 1909 ; Truesdell and Toupin,
1960 ; Toupin, 1962 ; Mindlin and Tiersten, 1962).

Class 3: High-gradient non-polar continua. In the same situation as class 2, where
particle spin is neglected, the particle rotation is equal to the rigid body rotation given in
eqn (9). We further neglect the moment transmission caused by inter-particle rotation
#™. On ignoring inter-particle rotation, eqn (12) reduces to

nm __ nynm ) 1 .n mmynm | Lon m y nm y nm
O = en L +38amLi™ Ly + € LT Ly Ly,

+u{lk,11,mL;Inm( é —r?m)'*'%u'[lk,l],mnﬁlff“rfm)LfnmLzm +.... (13)

The continuum variables still involve high gradients of displacement.

(2) First-gradient continua

Class 4 : Micro-polar continua. By using up to the first-order gradients of displacement
and rotation, eqn (11) is simplified. The inter-particle displacement and the inter-particle
rotation can be expressed as

07" = (U — e L™ + e (ri" L™ — ri" Li™)
" = wi L™, (14)

The first gradient of rotation, w?;, is termed the micro-polar strain (Eringen, 1968). To

ijs

study the influence of inter-particle stiffness on macro-behavior, Chang and Ma (1991,
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1992) derived a constitutive law for granular material based on eqn (14). The form of the
derived constitutive law resembles that of the micro-polar continua in which particle spin
and moments transmission are considered.

Class 5—Quasi-micro-polar continua. On neglecting the particle rotation gradient in
eqn (14), the inter-particle rotation #™ vanishes and eqn (14) becomes

8" = (e L. (13)

With the absence of particle rotation gradient and of moment transmitting, the granular
medium is no longer a micro-polar medium. Note that, in eqn (15), the particle rotation
w} (including particle spin) is considered even though the rotation gradient o}, is neglected.
Since the effect of particle spin ¥ is considered, the granular medium is of a quasi-
micropolar type. Using the expression of eqn (15), Chang and Misra (1989) and Chang
(1993) derived constitutive models for granular materials.

Class 6: Classic continua. On neglecting the particle spin in eqn (15), the particle
rotation is equal to the rigid body rotation given in eqn (9). Equation (15) becomes

6.‘,1”1 — 8;1 Lr?m' (16)
1=

This simple linear approximation provides a link between strain and inter-particle dis-
placement. The constitutive law for a granular medium derived on the basis of eqn (16)
resembles that of classic continua in solid mechanics. Under the assumption of eqn (16),
constitutive models for granular material can be found in the work by Walton (1987),
Bathurst and Rothenberg (1988), Chang (1988), Jenkins (1988), etc.

Most work in the literature on micro—macro properties of granular material treat
granular material as first-gradient continua in classes 4-6. However, very little attention
has been paid to the representation of granular material as high-gradient continua in classes
1-3. This is primarily due to the difficulties of dealing with the high-rank tensors. In the
present paper, we aim to develop a constitutive model of the simple high-gradient continua
(i.e. class 3).

2.3. Stress in an assembly
The equilibrium equations for an infinitesimal element within a particle is given by

T/j/.: = 0 (1 7)

where 1, is the Cauchy stress for the infinitesimal element. We define the mean stress ¢7; for
a particle as the average of the stress 7,; over the volume of the particle :

o= J 7, dv. (18)
K/Y"

By using the equilibrium condition and divergence theorem, the volume integral in eqn
(14) can be converted into a surface integral, which can in turn be expressed by a summation
over the discrete boundary forces, given by (Chang and Liao, 1989)

[
op=-—— 3 fir 19
! Vn (Z‘ lf.‘ ( )

where N” is the total number of contacts of the nth particle.
Now, we envisage a representative volume of granular material that is sufficiently small
when compared with the scale of the boundary value problem, yet consists of a sufficiently
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large number of particles to be statistically representative of the behavior of the material.
The stresses for such a representative unit can be defined on the basis of the volume average
of stresses at particle level as

M ONT

1 M
=y Z oV = Z > S (20)

n=1c¢=1

where M is the total number of particles in the representative volume V.
It is noted that the double summation in eqn (16) can be expressed by a single
summation over the total number of contacts N in the representative volume, given by

a; Z fiL 21

(,l

where L¢ is the branch vector, the same as that defined in eqn (6). The expression of mean
stress in eqn (21) is similar to that derived by Christoffersen et al. (1981) and Rothenberg
and Selvadurai (1981) from the principle of virtual work.

2.4. Constitutive relationship for an assembly

On the basis of the mean stress defined in eqn (21), we now seek to derive the stress—
strain relationship. We first use the inter-particle contact law of eqn (2) to express the inter-
particle force in eqn (21) in terms of inter-particle displacement and then use the kinematic
relationship [eqn (13)] to express the inter-particle displacement in terms of strain and
higher gradients of strain, thus

N
oo |7
Z A <g//\ L/ + 6 }l\l an LIHL( + B é’l\/.mLI L;n

L: an ) ,
+u{2.u.,,,<’ —rf"')L;1+éufz.n,mn <§ —r;"")L;L;). (22)

We adopt the kinematic hypothesis that the geometric deformation is the same for all
particles (i.e. the particle strain, &/, equals the overall strain, ¢;). The constitutive equations
can be expressed in the following form:

U - 411AIF/\/ + BA//\/IIIHL[\/ i + C ijkimEktm + D:/A/mu kJdlm + El;klmnu[k I,mn (23)

where
I/A/ l/ Z Ll

|-
_ cye g
Bi/'klnm - 6? Z L(r K;/\ Ll L:nLn
e=1
v
t/A/r7z = Z m

LL
r//lm = Z L( < U”>L(

(*I
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1 X Ly
Eyam =57 2 LiKie[ 5 —ri” | Lo L,
[jklmn ZV (§| -1k 3 /

The constitutive constants are functions of the branch length, inter-particle stiffness, and
number of contacts in the representative volume.

Compared with the conventional stress—strain law, stress in this constitutive equation
is a function not only of strain but also of higher gradients of strain. For a representative
volume of the granular material, the medium can be treated as statistically homogeneous
and can thus be regarded as possessing central symmetry. In this situation, Cy, =0,
D = 0. The effects of the first gradient of strain and rotation can be neglected.

The constitutive equation for the granular assembly becomes

o.rj = Aijklskl + Bijk/mngkl,mn + E{/k/mnu[k,/].nxn' (24)

The derived second-gradient constitutive law for granular material is in the same class
of constitutive law as that proposed by Toupin and Gazis (1964), Mindlin (1965), Coleman
and Hodgdon (1985), etc. The present constitutive theory is interesting in that the consti-
tutive coefficients are derived directly from the inter-particle contact stiffness. Thus the
present constitutive theory provides a link between micro-scale properties and macro-scale
behavior.

3. CONSTITUTIVE CONSTANTS FOR AN ISOTROPIC GRANULAR ASSEMBLY

3.1. Constitutive coefficient tensors in integration form

It is of interest to evaluate the role of inter-particle properties and particle size (internal
length) in the constitutive behavior. To this end, we select an idealized packing structure
and derive closed-form expressions for the constitutive constants explicitly in terms of inter-
particle stiffness. The idealized granular material is made of equal-size spheres and has an
isotropic packing structure. The packing has the same inter-particle properties for all
contacts. The contact stiffness is constant and independent of the contact force.

Since the representative volume consists of a large number of particles, a summation
of any quantity over all particle contacts can be expressed in an integral form by introducing
a density function £(y,¢). Let F¢ be the quantity, dependent on the orientation of contact,
to be summed over all contacts. The summation of F* can be written in an integral form,
given by

M l 7 *2n
Y Fye) = 7 J J F(y, 0)e(y, ) sinydyde. (25

c=1 y JOo

For a packing structure with an isotropic orientational distribution of inter-particle
contacts,

. M
iy, 9) = 7
The summation becomes
N . A[ 't (2 ‘ )
LF@me) = | | FG.¢)sinydydg. (26)
e=1 T Jo Jo

For packing with equal spheres of radius r, the branch vector L{ = 2rn{. The unit
contact normal vector 7 is a function of y,¢ as given in eqn (4). The constitutive coefficients
in a summation form as in eqn (17) can now be expressed in an integral form as follows :
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M (r [ . )
Ay = —- nlk,nn +kssi+ k] siny dy de
v lo Jo
Myt [m 2m .
Bz‘/’l(lmn T nlnmnn[knn/nk + k.\‘S/Sk + kl’jtk]nl sim y dy d¢ e (27)
37[ V 0 Jo
Mr‘l 7 (2n )
E:_//\'/mn = - W nr'nmnn[Knn/nk + K\Sjsk + Kll/tk]n/ sim y dy d¢

0 40

3.2. Isotropic conditions for constitutive tensors

A tensor is termed an isotropic tensor if the components of the tensor remain invariant
under all orthogonal transformations. Examining the tensors 4., Bijximms Eijkimn in €qn (27)
shows that these constitutive tensors are all isotropic. This condition of isotropy is expected
because the coefficient tensors are derived for granular materials with an isotropic contact
orientational distribution, which is independent of the rotation of cartesian co-ordinates.

On the basis of Weyl’s theory (1944) for an isotropic tensor, the coefficient tensors
hold certain properties. Owing to the condition of isotropy, the 81 constants in the fourth-
rank tensor A, are reduced to three non-zero constants. The fourth-rank tensor can be
expressed as:

Ay = @100+ 2040, +a30,0 (28)

where a,. a,, and a; are the three constitutive constants, and J,, is the Kronecker delta.
For the same reason, the 729 constants in the sixth-rank tensor B, are reduced to
15 non-zero constants, given by :

Bijkimn = B10,040,,+ B28;,01,0,, 4 B30,01,,011 B2 ;10
+ B3040 0., + B040;,0,, + B70,40 40, + B§ ;10 ,,,0,,
+ B3040 ,,00m + B100:n0 504, + B11 0,0 104, + B 20m0,,01
+ B30, 401+ B120,0;101, + B) 50,0 1m0

(29)

where Bi(i=1,...,15) are the 15 constitutive constants. Similarly, the sixth-rank tensor
E, ., can be represented by another 15 constitutive constants.

3.3. Symmetric conditions

From the objectiveness requirement of the constitutive equations, we note the following
conditions of suffixes: (1) the symmetric condition of strain [i.e. mutation of (k, /)], (ii) the
antisymmetric condition of the rotation (i.e. alternation of [k, /]), and (iii) the symmetrical
condition of the differentiation sequence for second-order gradients of strain and rotation
[i.e. mutation of (m, n)].

On the basis of these conditions, we can rewrite the constitutive equation in the
following form :

Gl’j = A[/'(l\/)ak/ + ij(k/)(mnj81"/.»11;1 + Ei_i[/“lj(mn)u[k‘l],mn (30)
where indices contained in parentheses (or square brackets) are assumed to be subject to
the operation of symmetrization (or alternation).

We now decompose the stress tensor into symmetric and anti-symmetric parts, and
eqn (30) becomes

o’(i/’) = A(l/)l'/\'/)gk/ + B(i/)(/([)(mn)‘(;/\/.mn + E(i/)[k[](mn)u[k‘l],mn (31)

Gyij) = A[,,](A/)&/“‘ B[,,J‘/\/.wmf?/\/.m;, + E[u][/\/](m/z)u[k./]ﬁm' (32)
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After the operation of symmetrization (or alternation) to the coefficient tensors, cor-
responding to the symmetric stress, the isotropic tensor 4y, has two constants ; By
has five constants, and E,;;,u.m has one constant, given in the following form:

Agpyany = 40,01+ 206,490 3
Bjytyomny = 01010140, + 520,;(81m0n + 61nO1m)
+ 530, (0461+ 840,4) + 84044(0 1y O i+ 0,0,)
455 [0 4 (8 O + 10O + 0 (O mOtn + 3uOkm) - (33)
+ 04 (040 + 6,:01m) 4 0;1(imOkn + 0iOm)]
Eipiionny = €1[04(8jmOm + 8,40m) — 8:1(0 ;mOkn + 6n0im)
+ 0, (FimOm + 0i0im) — 0;(OimOin + OniGsm)]

Similarly, for anti-symmetric stress, the isotropic~ tensor Am(k{) vanishes ; B ommy has
one constant, and Ej;jm) has two constants, given in the following form:

Ay = 0 )
Biyaromm = D6l0aldjmOm~+ 0 nOim) + 0it(0mOn + jnOiom)
= 0,4 (im0 + 0niBm) — 0,;(FimOn + OniOpom)]
Epywsionm = € 20,040 i 5,-/5‘,*)
+€3[04(3 O + 6 1nOim) — 60 jmOsn + 60 tm)
— 8, SimOm+ 8,0 1m) + 01 Binien+ OniOsm)]

(34

The 11 constants in eqns (33) and (34), as a result of the integration of eqn (27), are
given as follows:

A=4u(K,—K); p=2u2K,+3K)

by =b,=by = ;;lotrz(Kn~K5); e = —%Ksarz
ot (K, 3 y : (35)
b; = Earz(Kn+§Kv); bs = ﬁ“rz(Kn+;Ks)

2 1 2 2
e; =Kar’; ey =3Koar’; bg= —iKor’

where o = Mr*/15V, representing the density of the packing structure, M is the total number
of inter-particle contacts in the representative volume V, and r is the radius of particles.

It is noted that, in eqn (35), the 11 constants are interrelated. Out of the 11 constants,
there exist only four independent variables, namely, K,, K,, «, r. The interrelations among
the 11 constants are caused by other additional restrictions of suffixes, for example, the
mutations of (j, k), (i,/) and (m, ).

3.4. Derived constitutive equation
It is noted that the following relationships exist between the gradients of strain and
rotation, given by

Uiniry + Upjmme = V28— Eri iy (36)
2
ot — Etnk = ¥ Upkny- 37N

The relationships in eqns (36) and (37) can be proved by using the mutation property of
suffixes associated with the differentiation sequence.

On substituting the expressions for the constitutive tensors Agun, Bujanem> and
Epwnenmy 8lven in eqns (33) into eqn (31), and using the relationship given in eqn (36), the
symmetrical stress becomes
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O = A0y +2ue;+C, 5:‘,'V25kk + C2V2511,'+ Caep iy (38)
where
C| = b] +2b2
C, =2(b;+2bs+2e,) . (39)

Cy =2(by+2b5—2e)

On substituting the expressions for constitutive tensors Ay« Biijiwsmm» a0 Ejjunonm
given in eqns (34) into eqn (32), and using the relationship given in eqn (37), the skew-
symmetrical stress becomes

G[ij] = C4V2u[m (40)
where
Cy = 2(es+2e; + 2b¢). (41

By substituting the constants in eqn (35) into eqn (41), it follows that C, = 0. This
leads to a null skew-symmetric stress. The result is expected, since the moment transmitting
through inter-particle contacts is neglected. On substituting the constants in eqn (35) into
eqn (39), the final expression of the constitutive relation is given by

Oy = A0yt +2uey+ C10,;V ey + Co (Ve 4 i) (42)

where 4 and u in terms of inter-particle stiffness are given in eqn (35). The other two
constants are as follows:

Cl = %“rz(Kn _Kv)

C, = Jar’ (K, +3K.).

3.5 Micro—macro properties

On comparing the derived stress—strain law in eqn (42) with the generalized Hooke’s
law, the constants 4 and u are the usual Lame constants. The corresponding Young’s
modulus and Poisson’s ratio, from eqn (35), are derived as:

4Mr? <21<,, + 3K5>

3V \4K,+ K.
(43)
Kn - K\'

" T4K TK,

Equation (43) provides a method for estimating elastic moduli based on the values of inter-
particle stiffness.
Equation (35) can also be rearranged to give:
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_34+2u
" 204
pw—i

T 10a

(44)

Equation (44) provides a means for estimating inter-particle stiffness based on the measured
value of elastic moduli.

The values of the high-gradient constitutive coefficients C, and C, are expressed in
terms of contact stiffness as given in eqn (42). By substituting eqn (44) into eqn (42), the
values of C, and C, can be expressed in terms of Lame constants as follows:

C1=$‘ir2
30— p) , L (T=8V\ ¢ (45)
4,2 A — 2t
C, =sur <1+ 10/ > or Cy, = pur (1—2v

Equation (44) provides a useful method for estimating the high-gradient constitutive
constants, C, and C,, directly from the Lame constants and particle size. This relationship
is practical, since the high-gradient constitutive coefficients are difficult to evaluate from a
laboratory test.

3.6. Role of internal length and inter-particle stiffness

The high-gradient constitutive constants, C; and C, are functions of the internal length
r of the granular assembly that represents the particle size. When the particle size of a
granular material is very small compared with the representative volume of the material,
the effect of the strain gradient in the constitutive equation can be neglected. Thus the
constitutive equation reduces to the generalized Hooke’s law for granular materials. On
the other hand, the effect of the strain gradient becomes pronounced as the particle size
increases.

Inter-particle stiffness has a significant effect on the second-gradient constitutive
coefficients. Three cases are noted, as detailed below.

(1) K/K, is less than 1: this corresponds to particles with a smooth surface. Such a
ratio of inter-particle stiffness leads to a positive Poisson’s ratio and thus a positive
A and a positive C,. As the ratio of K,/ K, decreases (i.e. a smoother surface), values
of C, and Aincrease whereas the value of C, decreases. The limiting value physically
possible for K/K,, is zero. Corresponding to this limiting condition, it is noted that,
under the present formulations for granular assemblies with spherical particles, the
predicted Poisson’s ratio cannot be greater than 0.25 and the Lame constant A
cannot be greater than pu.

(2) K,/K,isequalto 1: this corresponds to particles with a rough surface. Such a ratio
of inter-particle stiffness leads to a zero Poisson’s ratio and thus a zero 1 and a
zero (. Under these conditions C, is a positive number.

(3) K/K, is greater than 1: this corresponds to particles with a very rough surface,
which is an unusual situation. Such a ratio of inter-particle stiffness leads to a
negative Poisson’s ratio and thus a negative 4 and a negative C,.

4. COMPARISON WITH OTHER MODELS

4.1. Simplified form of second-gradient theory

A convenient simple form based on the second-gradient theory can be arrived at by
neglecting the effects of the volume strain gradient ¢, ; in eqn (42), and by assuming the
condition of K, = 0.

The simplified version of eqn (42) takes the following form of constitutive equation
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g, = (14 V) (A0 80 + 2pe;;) (46)

where c is a positive constant, given by ¢ = 2r/7.

It is noted that the simplified model of second-gradient theory (with K, = 0) given in
eqn (46) is similar to the form given by Bazant and Pijaudier-Cabot (1989), based on non-
local continuum theory, and the linear model of Mindlin’s second-gradient theory (Mindlin,
1965 ; Beran and McCoy, 1970b).

4.2. Second-gradient theory and non-local theory

Comparison between a non-local model and a higher-gradient model for composite
media can be found in the work by Beran and McCoy (1970a, b) and Levin (1971). Here
we discuss the relations between non-local theory and the present second-gradient theory
for granular material. On the basis of Taylor’s expansion [eqn (6)], the high gradients of
displacement at the local point » contribute to the displacement at another local point m
in the neighboring distance. Second-order gradient terms in the present model therefore
reflect the effect of the neighboring medium on a local point. It is thus deduced that the
second-gradient theory is equivalent to the non-local theory under certain conditions.

In the Eringen—Kroener model of non-local elasticity, the constitutive equation is

0,(x) = f 5= ¥ 18, ) + 208, () v () @7

where a (|x —x'}} 1s the non-local function [see Kroener, 1967 ; Eringen and Edelen, 1972;
Eringen, 1973]. Expand the strain in the integrand at point x, i.e.

de;(x , , 0%, (x
aj( )+%(xk_xk)(xl_xl) i)

() = &0+ (xi =) 5 - ox0x,

(48)

and substitute the series of the strain in eqn (49) into eqn (47) of the non-local model. After
neglecting higher terms, we obtain the first-order approximation of the nonlocal model,
given by:

o, = (1+ C'Vz)(iéu‘gm +2pe;)

= J Sl = XD (= x) dv(x) @
¥

in which the integrand of eqn (49b) and the resultant c are positive. The value of ¢ depends
on the non-local function. Note that the first-order approximation of the non-local model
given in eqn (49) is the same as the simplified form of the present second-gradient model
in eqn (46). According to the second-gradient theory, the constant in eqn (49), ¢ = 2r%/7.

4.3. Shear stress and gradient of volume strain

The second-order gradient of volume strain in eqn (42) represents the inhomogeneous
distribution of volume strain along two perpendicular directions. The inhomogeneous
volume deformation results in symmetric shear stress along the two directions. This inter-
action of shear stress and volume strain is an interesting aspect of the second-gradient
theory.

5. CONCLUSIONS

In this paper, a second-gradient constitutive theory is developed for granular materials,
in which the effect of the second order of the strain gradient is considered. For granular
material with an isotropic packing structure, the constitutive coefficients are derived in
closed-form expressions, in terms of inter-particle properties. For isotropic material, there
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are four elastic constitutive constants, including two Lame constants and two constants
associated with the strain gradient. The relationship in eqn (44) provides a useful method
for obtaining the second-gradient constitutive coefficients directly from the Lame constants.
This relationship is useful, since the values of the second-gradient constitutive coefficient
are difficult to evaluate from a laboratory test.

The second-gradient constitutive coefficients are functions of internal length r (particle
size) of the granular assembly. When the particle size in a granular material is very small,
the effect of the strain gradient in the constitutive equation can be neglected. On the other
hand, the effect of the strain gradient becomes pronounced for materials with large-size
particles. Inter-particle stiffness has a significant effect on the second-gradient constitutive
constants. The values of Poisson’s ratio, /. and C,, are positive for particles with a smooth
surface (K,/K, less than 1), but they become negative for particles with a very rough surface
(K,/K, greater than 1).

A simplified form of the present second-gradient theory resembles other second-
gradient models proposed by Mindlin (1965), Bazant and Pijaudier-Cabot (1989), and
Beran and McCoy (1970). The simplified model of the present second-gradient theory
also resembles the first-order approximation of the Eringen—Kroner model in non-local
elasticity.
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